Find the area of the smaller region bounded by the ellipse \(\frac{x^2}{a^2}\)+\(\frac{y^2}{b^2}\)=1 and the line \(\frac{x}{a}\)+\(\frac{y}{b}\)=1
The area of the smaller region bounded by the ellipse,\(\frac{x^2}{a^2}\)+\(\frac{y^2}{b^2}\)2=1,and the line,
\(\frac{x}{a}\)+\(\frac{y}{b}\)=1,is represented by the shaded region BCAB as
∴Area BCAB=Area(OBCAO)–Area(OBAO)
=
\[\int_{0}^{a} 1-\frac{x^2}{a^2} \,dx\]\[-\int_{0}^{a} b(1-\frac{x}{a}) \,dx\]=\(\frac{b}{a}\)
\[\int_{0}^{a} \sqrt{a^2-x^2} \,dx\]-\(\frac{b}{a}\)\(\int_{0}^{a} (a-x) \,dx\)
=\(\frac{b}{a}\)[{\(\frac{x}{2}\sqrt{a^2-x^2} \)+\(\frac{a^2}{2}\sin^{-1}\frac{x}{a}\)}a0-{ax-\(\frac{x^2}{2}\)}a0]
=\(\frac{b}{a}\)[{\(\frac{a^2}{2}\)(\(\frac{π}{2}\))}-{a2-\(\frac{a^2}{2}\)}]
=\(\frac{b}{a}\)[\(\frac{a^2π}{4}\)-\(\frac{a^2}{2}\)]
=\(\frac{ba^2}{2a}\)[\(\frac{π}{2}\)-1]
=\(\frac{ab}{2}\)[\(\frac{π}{2}\)-1]
=\(\frac{ab}{4}\)(π-2)

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?