The region bounded by the parabola,y2=4x,and the line, x=3,is the area OACO.
The area OACO is symmetrical about x-axis.
∴Area of OACO=2(Area of OAB)
Area OACO=\(2[∫_0^3ydx]\)
=\(2∫_0^3 2\sqrt{x}dx\)
=\(4\bigg[\frac{x\frac{3}{2}}{\frac{3}{2}}\bigg]_0^3\)
=\(\frac{8}{3}[(3)^\frac{3}{2}]\)
\(=8\sqrt3\)
Therefore,the required area is \(8\sqrt3\)units.
The area of the region given by \(\left\{(x, y): x y \leq 8,1 \leq y \leq x^2\right\}\) is :
What is the Planning Process?