The area bounded by the curve,x2=4y,and line,x=4y-2,is represented by the
shaded area OBAO.
Let A and B be the points of intersection of the line and parabola.
Coordinates of point A are\((-1,\frac{1}{4}).\)
Coordinates of point B are(2,1).
We draw AL and BM perpendicular to x-axis.
It can be observed that,
Area OBAO=Area OBCO+Area OACO...(1)
Then,Area OBCO=Area OMBC-Area OMBO
=\(∫_0^2 \frac{x+2}{4} dx-∫_0^2 \frac{x^2}{4}dx\)
=\(\frac{1}{4}[\frac{x^2}{2}+2x]_0^2-\frac{1}{4}[\frac{x^3}{3}]_0^2\)
=\(\frac{1}{4}[2+4]-\frac{1}{4}[\frac{8}{3}]\)
=\(\frac{3}{2}-\frac{2}{3}\)
=\(\frac{5}{6}\)
Similarly,Area OACO=Area OLAC-Area OLAO
=\(∫_0^{-1} \frac{x+2}{4}dx-∫_0^{-1} \frac{x^2}{4}dx\)
=\(\frac{1}{4}[\frac{x^2}{2}+2x]_0^{-1} -[\frac{1}{4}\frac{x^3}{3}]_{-1}^0\)
=-\(\frac{1}{4}[\frac{(-1)^2}{2}+2(-1)]-[-\frac{1}{4}((-\frac{1)^3}{3})]\)
=-\(\frac{1}{4}[\frac{1}{2}-2]-\frac{1}{12}\)
=\(\frac{1}{2}-\frac{1}{8}-\frac{1}{12}\)
=\(\frac{7}{24}\)
Therefore,required area=\((\frac{5}{6}+\frac{7}{24})\)= \(\frac{9}{8}\) units.
The area of the region given by \(\left\{(x, y): x y \leq 8,1 \leq y \leq x^2\right\}\) is :
What is the Planning Process?