The area bounded by the curves,(x-1)2+y2=1 and x2+y2=1,is represented by the shaded area as
On solving the equations,(x-1)2+y2=1 and x2+y2=1,we obtain the point of
intersection as\(A(\frac{1}{2},\frac{\sqrt3}{2})\)and B\((\frac{1}{2},-\frac{\sqrt3}{2})\)
It can be observed that the required area is symmetrical about x-axis.
∴Area OBCAO=2×Area OCAO
We join AB,which intersect OC at M,such that AM is perpendicular to OC.
The coordinates of M are\((\frac{1}{2},0).\)
\(⇒Area\, OCAO=Area\, OMAO+Area\, MCAM\)
\(=[∫_0^\frac{1}{2}\sqrt{1-(x-1)^2}dx+∫^1_\frac{1}{2}\sqrt{1-x^2}dx]\)
\(=\bigg[\frac{x-1}{2}\sqrt{1-(x-1)^2}+\frac{1}{2}sin^{-1}(x-1)\bigg]_0^\frac{1}{2}+\bigg[\frac{x}{2}\sqrt{1-x^2}+\frac{1}{2}sin^{-1}x\bigg]^1_\frac{1}{2}\)
\(=[-\frac{1}{4}\sqrt{1-(-\frac{1}{2})^2}+\frac{1}{2}sin^{-1}(\frac{1}{2}-1)-\frac{1}{2}sin^{-1}(-1)]\)+\([\frac{1}{2}sin^{-1}(1)-\frac{1}{4}\sqrt{1-(\frac{1}{2})^2}-\frac{1}{2}sin^{-1}(\frac{1}{2})]\)
\(=[-\frac{\sqrt3}{8}+\frac{1}{2}(-\frac{π}{6})-\frac{1}{2}(-\frac{π}{2})]+[\frac{1}{2}(\frac{π}{2})-\frac{\sqrt3}{8}-\frac{1}{2}(\frac{π}{6})]\)
\(=[-\frac{\sqrt3}{4}-\frac{π}{12}+\frac{π}{4}+\frac{π}{4}-\frac{π}{12}]\)
\(=[-\frac{\sqrt3}{4}-\frac{π}{6}+\frac{π}{2}]\)
\(=[\frac{2π}{6}-\frac{\sqrt3}{4}]\)
Therefore,required area OBCAO\(=2\times[\frac{2π}{6}-\frac{\sqrt3}{4}]\)=\(=[\frac{2π}{3}-\frac{\sqrt3}{2}]\) units.
The area of the region given by \(\left\{(x, y): x y \leq 8,1 \leq y \leq x^2\right\}\) is :
What is the Planning Process?