Find the angles between the following pairs of lines:
(i) \(\overrightarrow r= 2\hat i-5\hat j+\hat k+ \lambda (3\hat i-2\hat j+6\hat k)\)and
\(\overrightarrow r=7\hat i-6\hat k+\mu(\hat i+2\hat j+2\hat k)\)
(ii) \(\overrightarrow r=3\hat i+\hat j-2\hat k+\lambda(\hat i-\hat j-2\hat k)\) and
\(\overrightarrow r = 2\hat i-\hat j-56\hat k+\mu(3\hat i-5\hat j-4\hat k)\)
(i) Let Q be the angle between the given lines.
The angle between the given pairs of lines is given by cosQ=\(\begin{vmatrix}\frac{\overrightarrow b. \overrightarrow b}{\| \overrightarrow b \mid \mid \overrightarrow b. \|} \end{vmatrix}\)
The given lines are parallel to the vectors, \(\overrightarrow b_1=3\hat i+2\hat j+6\hat k\, and \overrightarrow b_2=\hat i+2\hat j+2\hat k\), respectively,
∴|\(\overrightarrow b_1\)|=\(\sqrt {3^2+2^2+6^2}\) =7
|\(\overrightarrow b_2\)|=\(\sqrt{(1)^2+(2)^2+(2)^2}=3\)
\(\overrightarrow b_1.\overrightarrow b_2\)
=\((3\hat i+2\hat j+6\hat k\,)(\hat i+2\hat j+2\hat k)\)
=31+22+62
=3+4+12
=19
\(\Rightarrow\) cos Q=\(\frac{19}{73}\)
\(\Rightarrow \) Q= \(\cos^{-1}\)\(\bigg(\frac{19}{21}\bigg)\)
(ii) The given lines are parallel to the vectors \(\overrightarrow b_1=\hat i-\hat j-2\hat k \) and \(\overrightarrow b_2=3\hat i-5\hat j-4\hat k \), respectively,
∴\(\mid \overrightarrow b_1\mid= \sqrt {(1)^2+(-1)^2+(-2)^2}=\sqrt 6\)
\(\mid\overrightarrow b_1 \mid= \sqrt {(3)^2+(-5)^2+(-4)^2}=\sqrt {50}=5\sqrt 2\)
\(\overrightarrow b_1.\overrightarrow b_2\)
=\((\hat i-\hat j-2\hat k )\).\((3\hat i-5\hat j-4\hat k )\)
=1.3-1(-5)-2(-4)
=3+5+8
=16
cos Q=\(\begin{vmatrix}\frac{\overrightarrow b. \overrightarrow b}{\| \overrightarrow b \mid \mid \overrightarrow b. \|} \end{vmatrix}\)
cos Q=\(\frac{16}{\sqrt16.5\sqrt2}\)
cos Q=\(\frac{16}{\sqrt 2.\sqrt3.5\sqrt2}\)
cos Q=\(\frac{16}{10\sqrt3}\)
cos Q=\(\frac{8}{5\sqrt3}\)
Q=cos-1\(\frac{8}{5\sqrt3}\)
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?
The two straight lines, whenever intersects, form two sets of angles. The angles so formed after the intersection are;
The absolute values of angles created depend on the slopes of the intersecting lines.

It is also worth taking note, that the angle so formed by the intersection of two lines cannot be calculated if any of the lines is parallel to the y-axis as the slope of a line parallel to the y-axis is an indeterminate.
Read More: Angle Between Two Lines