Find the angles between the following pairs of lines:
(i) \(\overrightarrow r= 2\hat i-5\hat j+\hat k+ \lambda (3\hat i-2\hat j+6\hat k)\)and
\(\overrightarrow r=7\hat i-6\hat k+\mu(\hat i+2\hat j+2\hat k)\)
(ii) \(\overrightarrow r=3\hat i+\hat j-2\hat k+\lambda(\hat i-\hat j-2\hat k)\) and
\(\overrightarrow r = 2\hat i-\hat j-56\hat k+\mu(3\hat i-5\hat j-4\hat k)\)
(i) Let Q be the angle between the given lines.
The angle between the given pairs of lines is given by cosQ=\(\begin{vmatrix}\frac{\overrightarrow b. \overrightarrow b}{\| \overrightarrow b \mid \mid \overrightarrow b. \|} \end{vmatrix}\)
The given lines are parallel to the vectors, \(\overrightarrow b_1=3\hat i+2\hat j+6\hat k\, and \overrightarrow b_2=\hat i+2\hat j+2\hat k\), respectively,
∴|\(\overrightarrow b_1\)|=\(\sqrt {3^2+2^2+6^2}\) =7
|\(\overrightarrow b_2\)|=\(\sqrt{(1)^2+(2)^2+(2)^2}=3\)
\(\overrightarrow b_1.\overrightarrow b_2\)
=\((3\hat i+2\hat j+6\hat k\,)(\hat i+2\hat j+2\hat k)\)
=31+22+62
=3+4+12
=19
\(\Rightarrow\) cos Q=\(\frac{19}{73}\)
\(\Rightarrow \) Q= \(\cos^{-1}\)\(\bigg(\frac{19}{21}\bigg)\)
(ii) The given lines are parallel to the vectors \(\overrightarrow b_1=\hat i-\hat j-2\hat k \) and \(\overrightarrow b_2=3\hat i-5\hat j-4\hat k \), respectively,
∴\(\mid \overrightarrow b_1\mid= \sqrt {(1)^2+(-1)^2+(-2)^2}=\sqrt 6\)
\(\mid\overrightarrow b_1 \mid= \sqrt {(3)^2+(-5)^2+(-4)^2}=\sqrt {50}=5\sqrt 2\)
\(\overrightarrow b_1.\overrightarrow b_2\)
=\((\hat i-\hat j-2\hat k )\).\((3\hat i-5\hat j-4\hat k )\)
=1.3-1(-5)-2(-4)
=3+5+8
=16
cos Q=\(\begin{vmatrix}\frac{\overrightarrow b. \overrightarrow b}{\| \overrightarrow b \mid \mid \overrightarrow b. \|} \end{vmatrix}\)
cos Q=\(\frac{16}{\sqrt16.5\sqrt2}\)
cos Q=\(\frac{16}{\sqrt 2.\sqrt3.5\sqrt2}\)
cos Q=\(\frac{16}{10\sqrt3}\)
cos Q=\(\frac{8}{5\sqrt3}\)
Q=cos-1\(\frac{8}{5\sqrt3}\)
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
Let \(\alpha x+\beta y+y z=1\) be the equation of a plane passing through the point\((3,-2,5)\)and perpendicular to the line joining the points \((1,2,3)\) and \((-2,3,5)\) Then the value of \(\alpha \beta y\)is equal to ____
What is the Planning Process?
The two straight lines, whenever intersects, form two sets of angles. The angles so formed after the intersection are;
The absolute values of angles created depend on the slopes of the intersecting lines.
It is also worth taking note, that the angle so formed by the intersection of two lines cannot be calculated if any of the lines is parallel to the y-axis as the slope of a line parallel to the y-axis is an indeterminate.
Read More: Angle Between Two Lines