Find matrix \( AB \) if
\[ A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & -2 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 6 & 7 \\ 5 & 3 \end{bmatrix} \]
Step 1: Matrix multiplication formula for \( AB \) is:
\[ AB = \begin{bmatrix} -1 & 2 & 3 \\ 4 & -2 & 5 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 6 & 7 \\ 5 & 3 \end{bmatrix} \]
Step 2: Perform matrix multiplication for each element:
Thus, the resulting matrix \( AB \) is:
\[ AB = \begin{bmatrix} 25 & 22 \\ 21 & 5 \end{bmatrix} \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $