Find matrix \( AB \) if
\[ A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & -2 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 6 & 7 \\ 5 & 3 \end{bmatrix} \]
Step 1: Matrix multiplication formula for \( AB \) is:
\[ AB = \begin{bmatrix} -1 & 2 & 3 \\ 4 & -2 & 5 \end{bmatrix} \times \begin{bmatrix} 2 & 1 \\ 6 & 7 \\ 5 & 3 \end{bmatrix} \]
Step 2: Perform matrix multiplication for each element:
Thus, the resulting matrix \( AB \) is:
\[ AB = \begin{bmatrix} 25 & 22 \\ 21 & 5 \end{bmatrix} \]
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]