Let's solve the definite integral step by step.
1. Set up the Integral:
We are given:
∫₀^(1/2) [x² / (1 - x²)^(3/2)] dx = k/6
2. Use Trigonometric Substitution:
Let x = sin(θ). Then dx = cos(θ) dθ.
When x = 0, sin(θ) = 0, so θ = 0.
When x = 1/2, sin(θ) = 1/2, so θ = π/6.
Substitute into the integral:
∫₀^(π/6) [sin²(θ) / (1 - sin²(θ))^(3/2)] cos(θ) dθ
3. Simplify the Integral:
Using the identity 1 - sin²(θ) = cos²(θ), we get:
∫₀^(π/6) [sin²(θ) / (cos²(θ))^(3/2)] cos(θ) dθ
∫₀^(π/6) [sin²(θ) / cos³(θ)] cos(θ) dθ
∫₀^(π/6) [sin²(θ) / cos²(θ)] dθ
∫₀^(π/6) tan²(θ) dθ
4. Use Trigonometric Identity:
We know that tan²(θ) = sec²(θ) - 1.
∫₀^(π/6) (sec²(θ) - 1) dθ
5. Integrate:
[tan(θ) - θ]₀^(π/6)
6. Evaluate the Limits:
[tan(π/6) - π/6] - [tan(0) - 0]
[1/√3 - π/6] - [0 - 0]
1/√3 - π/6
7. Relate to k/6:
We are given that the integral equals k/6.
1/√3 - π/6 = k/6
Multiply by 6:
6/√3 - π = k
2√3 - π = k
Therefore, k = 2√3 - π.
Definite integral is an operation on functions which approximates the sum of the values (of the function) weighted by the length (or measure) of the intervals for which the function takes that value.
Definite integrals - Important Formulae Handbook
A real valued function being evaluated (integrated) over the closed interval [a, b] is written as :
\(\int_{a}^{b}f(x)dx\)
Definite integrals have a lot of applications. Its main application is that it is used to find out the area under the curve of a function, as shown below: