Step 1: Use substitution.
Let \( u = \sin^{-1}(x^{3/2}) \). Then:
\[
x^{3/2} = \sin u \quad \Rightarrow \quad x = (\sin u)^{2/3}.
\]
Differentiate:
\[
dx = \frac{2}{3} (\sin u)^{-1/3} \cos u \, du.
\]
Step 2: Substitute into the integral.
Replace \( x \) and \( dx \) in the integral:
\[
\int x^2 \sin^{-1}(x^{3/2}) \, dx = \int \left[(\sin u)^{4/3}\right] u \cdot \frac{2}{3} (\sin u)^{-1/3} \cos u \, du.
\]
Simplify:
\[
\int x^2 \sin^{-1}(x^{3/2}) \, dx = \frac{2}{3} \int u (\sin u)^{3/3} \cos u \, du = \frac{2}{3} \int u \sin u \cos u \, du.
\]
Step 3: Simplify using trigonometric identities.
Use \( \sin u \cos u = \frac{1}{2} \sin(2u) \):
\[
\frac{2}{3} \int u \sin u \cos u \, du = \frac{1}{3} \int u \sin(2u) \, du.
\]
Step 4: Solve using integration by parts.
Let \( v = u \) and \( dw = \sin(2u) \, du \):
\[
v = u, \quad dv = du, \quad w = -\frac{1}{2} \cos(2u).
\]
Integration by parts:
\[
\int u \sin(2u) \, du = -\frac{u}{2} \cos(2u) + \frac{1}{2} \int \cos(2u) \, du.
\]
Step 5: Integrate the remaining term.
\[
\int \cos(2u) \, du = \frac{1}{2} \sin(2u).
\]
Thus:
\[
\int u \sin(2u) \, du = -\frac{u}{2} \cos(2u) + \frac{1}{4} \sin(2u).
\]
Step 6: Back-substitute \( u = \sin^{-1}(x^{3/2}) \).
Replace \( u \) and simplify to express the final answer.
Conclusion:
The value of the integral is:
\[
\boxed{-\frac{u}{2} \cos(2u) + \frac{1}{4} \sin(2u) + C}.
\]