Step 1: Decompose the fraction into partial fractions.
\[
\frac{x^2}{(x^2 + 4)(x^2 + 9)} = \frac{A}{x^2 + 4} + \frac{B}{x^2 + 9}
\]
Multiplying throughout by \( (x^2 + 4)(x^2 + 9) \):
\[
x^2 = A(x^2 + 9) + B(x^2 + 4)
\]
Expanding:
\[
x^2 = (A + B)x^2 + 9A + 4B
\]
Equating coefficients:
\[
A + B = 1, \quad 9A + 4B = 0 \tag{1}
\]
Step 2: Solve for \( A \) and \( B \).
From equation (1): \( B = 1 - A \). Substituting in:
\[
9A + 4(1 - A) = 0
\]
\[
5A = -4 \quad \Rightarrow \quad A = -\frac{4}{5}, \quad B = \frac{9}{5}
\]
Step 3: Integrate each term.
\[
\int \frac{x^2}{(x^2 + 4)(x^2 + 9)} \, dx = -\frac{4}{5} \int \frac{1}{x^2 + 4} \, dx + \frac{9}{5} \int \frac{1}{x^2 + 9} \, dx
\]
Using the standard formula:
\[
\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right)
\]
\[
= -\frac{2}{5} \tan^{-1} \left( \frac{x}{2} \right) + \frac{3}{5} \tan^{-1} \left( \frac{x}{3} \right) + C
\]
Final Answer:
\[
\boxed{-\frac{2}{5} \tan^{-1} \left( \frac{x}{2} \right) + \frac{3}{5} \tan^{-1} \left( \frac{x}{3} \right) + C}
\]