\(\int_{-\pi}^{-3\frac{\pi}{4}}sinx\,dx+\int_{-3\frac{\pi}{4}}^{\frac{\pi}{4}}cosx\,dx+\int_{\frac{\pi}{4}}^{\pi}sinx\,dx\)
\(-cos\,x|^{-3\frac{\pi}{4}}_{-\pi}+sin\,x|^{\frac{\pi}{4}}_{-3\frac{\pi}{4}}+ \,-cos\,x|^{\pi}_{\frac{\pi}{4}}\)
\(=(\frac{1}{\sqrt2}-1)+(\frac{1}{\sqrt2}+\frac{1}{\sqrt2})+(1+\frac{1}{\sqrt2})\)
\(=2\sqrt2\)
The correct option is (D): \(2\sqrt{2}\)
If 5f(x) + 4f (\(\frac{1}{x}\)) = \(\frac{1}{x}\)+ 3, then \(18\int_{1}^{2}\) f(x)dx is:
There are distinct applications of integrals, out of which some are as follows:
In Maths
Integrals are used to find:
In Physics
Integrals are used to find: