The solubility product \( K_{sp} \) for calcium sulphate is given by:
\[
K_{sp} = [\text{Ca}^{2+}] [\text{SO}_4^{2-}].
\]
Let the concentration of \( \text{SO}_4^{2-} \) at equilibrium be \( x \). Since the dissociation of calcium sulphate produces one mole of \( \text{Ca}^{2+} \) and one mole of \( \text{SO}_4^{2-} \) per mole of calcium sulphate, the concentration of \( \text{Ca}^{2+} \) is also \( x \).
Thus, the solubility product becomes:
\[
K_{sp} = x \cdot x = x^2 = 2 \times 10^{-5}.
\]
Solving for \( x \):
\[
x = \sqrt{2 \times 10^{-5}} \approx 0.0045 \, \text{mol/L}.
\]
Thus, the molar concentration of \( \text{SO}_4^{2-} \) at equilibrium is \( 0.0045 \, \text{mol/L} \).