Evaluate\(\begin{vmatrix} x &y &x+y \\ y&x+y &x \\ x+y&x &y \end{vmatrix}\)
\(\Delta = \begin{vmatrix} x &y &x+y \\ y&x+y &x \\ x+y&x &y \end{vmatrix}\)
Applying R1\(\rightarrow\)R1+R2+R3, we have
Δ=\(\begin{vmatrix} 2(x+y) &y &x+y \\ 2(x+y)&x+y &x \\ 2(x+y)&x &y \end{vmatrix}\)
= 2(x+y)\(\begin{vmatrix} 1&y &x+y \\ 1&x+y &x \\ 1&x &y \end{vmatrix}\)
Applying C2\(\rightarrow\)C2-C1 and C3\(\rightarrow\)C3-C1, we have
Δ=2(x+y)\(\begin{vmatrix} 1 &y &x+y \\ 0&x &x \\ 0&x-y & -x \end{vmatrix}\)
Expanding along R1, we have:
Δ=2(x+y)[-x2+y(x-y)]
=-2(x+y)(x2+y2-yx)
=-2(x3+y3)
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
