Question:

Evaluate\(\begin{vmatrix} x &y  &x+y \\   y&x+y  &x \\   x+y&x  &y  \end{vmatrix}\)

Updated On: Sep 21, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(\Delta = \begin{vmatrix} x &y  &x+y \\   y&x+y  &x \\   x+y&x  &y  \end{vmatrix}\)
Applying R1\(\rightarrow\)R1+R2+R3, we have
Δ=\(\begin{vmatrix} 2(x+y) &y  &x+y \\   2(x+y)&x+y  &x \\   2(x+y)&x  &y  \end{vmatrix}\)
= 2(x+y)\(\begin{vmatrix} 1&y  &x+y \\   1&x+y  &x \\   1&x  &y  \end{vmatrix}\)
 Applying C2\(\rightarrow\)C2-C1 and C3\(\rightarrow\)C3-C1, we have
Δ=2(x+y)\(\begin{vmatrix} 1 &y  &x+y \\ 0&x  &x \\  0&x-y  & -x \end{vmatrix}\)

Expanding along R1, we have:
Δ=2(x+y)[-x2+y(x-y)]
=-2(x+y)(x2+y2-yx)
=-2(x3+y3)

Was this answer helpful?
0
0