Evaluate\(\begin{vmatrix} x &y &x+y \\ y&x+y &x \\ x+y&x &y \end{vmatrix}\)
\(\Delta = \begin{vmatrix} x &y &x+y \\ y&x+y &x \\ x+y&x &y \end{vmatrix}\)
Applying R1\(\rightarrow\)R1+R2+R3, we have
Δ=\(\begin{vmatrix} 2(x+y) &y &x+y \\ 2(x+y)&x+y &x \\ 2(x+y)&x &y \end{vmatrix}\)
= 2(x+y)\(\begin{vmatrix} 1&y &x+y \\ 1&x+y &x \\ 1&x &y \end{vmatrix}\)
Applying C2\(\rightarrow\)C2-C1 and C3\(\rightarrow\)C3-C1, we have
Δ=2(x+y)\(\begin{vmatrix} 1 &y &x+y \\ 0&x &x \\ 0&x-y & -x \end{vmatrix}\)
Expanding along R1, we have:
Δ=2(x+y)[-x2+y(x-y)]
=-2(x+y)(x2+y2-yx)
=-2(x3+y3)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
