Evaluate\(\begin{vmatrix} x &y &x+y \\ y&x+y &x \\ x+y&x &y \end{vmatrix}\)
\(\Delta = \begin{vmatrix} x &y &x+y \\ y&x+y &x \\ x+y&x &y \end{vmatrix}\)
Applying R1\(\rightarrow\)R1+R2+R3, we have
Δ=\(\begin{vmatrix} 2(x+y) &y &x+y \\ 2(x+y)&x+y &x \\ 2(x+y)&x &y \end{vmatrix}\)
= 2(x+y)\(\begin{vmatrix} 1&y &x+y \\ 1&x+y &x \\ 1&x &y \end{vmatrix}\)
Applying C2\(\rightarrow\)C2-C1 and C3\(\rightarrow\)C3-C1, we have
Δ=2(x+y)\(\begin{vmatrix} 1 &y &x+y \\ 0&x &x \\ 0&x-y & -x \end{vmatrix}\)
Expanding along R1, we have:
Δ=2(x+y)[-x2+y(x-y)]
=-2(x+y)(x2+y2-yx)
=-2(x3+y3)
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).