Evaluate\(\begin{vmatrix} x &y &x+y \\ y&x+y &x \\ x+y&x &y \end{vmatrix}\)
\(\Delta = \begin{vmatrix} x &y &x+y \\ y&x+y &x \\ x+y&x &y \end{vmatrix}\)
Applying R1\(\rightarrow\)R1+R2+R3, we have
Δ=\(\begin{vmatrix} 2(x+y) &y &x+y \\ 2(x+y)&x+y &x \\ 2(x+y)&x &y \end{vmatrix}\)
= 2(x+y)\(\begin{vmatrix} 1&y &x+y \\ 1&x+y &x \\ 1&x &y \end{vmatrix}\)
Applying C2\(\rightarrow\)C2-C1 and C3\(\rightarrow\)C3-C1, we have
Δ=2(x+y)\(\begin{vmatrix} 1 &y &x+y \\ 0&x &x \\ 0&x-y & -x \end{vmatrix}\)
Expanding along R1, we have:
Δ=2(x+y)[-x2+y(x-y)]
=-2(x+y)(x2+y2-yx)
=-2(x3+y3)
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: