For $ t>-1 $, let $ \alpha_t $ and $ \beta_t $ be the roots of the equation
$
\left( (t + 2)^{\frac{1}{7}} - 1 \right)x^2 + \left( (t + 2)^{\frac{1}{6}} - 1 \right)x + \left( (t + 2)^{\frac{1}{21}} - 1 \right) = 0.
$
If $ \lim_{t \to 1^+} \alpha_t = a $ and $ \lim_{t \to 1^+} \beta_t = b $, then $ 72(a + b)^2 $ is equal to: