>
Exams
>
Mathematics
>
Limits
>
evaluate the limit lim x to 0 frac 1 cos 4x 2 sin
Question:
Evaluate the limit:
\[ \lim_{x \to 0} \frac{1 - \cos 4x}{2 \sin^2 x + x \tan 7x} \]
Show Hint
When dealing with small angle approximations, expand trigonometric functions using their series expansions and simplify the resulting expressions.
IPU CET - 2018
IPU CET
Updated On:
Dec 11, 2025
\( \frac{8}{9} \)
0
\( \frac{9}{8} \)
\( \infty \)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
We use series expansions of trigonometric functions around 0: \[ \cos 4x \approx 1 - 8x^2 \quad {and} \quad \sin x \approx x \quad {and} \quad \tan 7x \approx 7x \] Substituting these approximations into the expression: \[ \lim_{x \to 0} \frac{1 - (1 - 8x^2)}{2x^2 + x(7x)} = \frac{8x^2}{2x^2 + 7x^2} = \frac{8}{9} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits
Let \(f: R \to (0, \infty)\) be a twice differentiable function such that \(f(3) = 18\), \(f'(3)=0\) and \(f''(3) = 4\). Then \(\lim_{x \to 1} \log_e \left[ \frac{f(2+x)}{f(3)} \right]^{\frac{18}{(x-1)^2}}\) is equal to:
JEE Main - 2026
Mathematics
Limits
View Solution
Let \( f(x) = \int \frac{(2 - x^2) \cdot e^x{(\sqrt{1 + x})(1 - x)^{3/2}} dx \). If \( f(0) = 0 \), then \( f\left(\frac{1}{2}\right) \) is equal to :}
JEE Main - 2026
Mathematics
Limits
View Solution
The value of \[ \lim_{x\to 0}\frac{\log_e\!\big(\sec(ex)\cdot \sec(e^2x)\cdots \sec(e^{10}x)\big)} {e^2-e^{2\cos x}} \] is equal to:
JEE Main - 2026
Mathematics
Limits
View Solution
If the function \[ f(x)=\frac{e^x\left(e^{\tan x - x}-1\right)+\log_e(\sec x+\tan x)-x}{\tan x-x} \] is continuous at $x=0$, then the value of $f(0)$ is equal to
JEE Main - 2026
Mathematics
Limits
View Solution
If \[ \lim_{x\to 0} \frac{e^{(a-1)x}+2\cos bx+(c-2)e^{-x}} {x\cos x-\log_e(1+x)} =2, \] then \(a^2+b^2+c^2\) is equal to
JEE Main - 2026
Mathematics
Limits
View Solution
View More Questions
Questions Asked in IPU CET exam
The value of $\sin 20^\circ \times \sin 40^\circ \times \sin 60^\circ \times \sin 80^\circ$ is
IPU CET - 2025
Trigonometry
View Solution
The derivative of $e^{2x}\sin x$ with respect to $x$ is
IPU CET - 2025
Differentiation
View Solution
If vector $\vec{a} = 2\hat{i} + m\hat{j} + \hat{k}$ and vector $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other, then the value of $m$ is
IPU CET - 2025
Vectors
View Solution
Synonym of ``Brief'' is
IPU CET - 2025
Synonyms
View Solution
Spot the error: ``I prefer coffee than tea.''
IPU CET - 2025
Vocabulary
View Solution
View More Questions