>
Guru Gobind Singh Indraprastha University Common Entrance Test
>
Mathematics
List of top Mathematics Questions on Limits asked in Guru Gobind Singh Indraprastha University Common Entrance Test
Evaluate the limit:
lim
x
→
0
1
−
cos
4
x
2
sin
2
x
+
x
tan
7
x
\lim_{x \to 0} \frac{1 - \cos 4x}{2 \sin^2 x + x \tan 7x}
x
→
0
lim
2
sin
2
x
+
x
tan
7
x
1
−
cos
4
x
IPU CET - 2018
IPU CET
Mathematics
Limits
Choose the most appropriate option.
lim
x
→
1
x
(
1
−
x
)
\lim_{x \to 1} x^{(1-x)}
lim
x
→
1
x
(
1
−
x
)
is equal to:
IPU CET - 2018
IPU CET
Mathematics
Limits
lim
x
→
∞
ln
x
x
n
\lim_{x \to \infty} \frac{\ln x}{x^n}
lim
x
→
∞
x
n
l
n
x
is equal to
IPU CET - 2016
IPU CET
Mathematics
Limits
lim
x
→
0
a
x
−
1
x
is equal to
\lim_{x \to 0} \frac{a^x - 1}{x} \text{ is equal to}
x
→
0
lim
x
a
x
−
1
is equal to
IPU CET - 2016
IPU CET
Mathematics
Limits
lim
x
→
0
tan
−
1
(
−
x
1
−
x
2
)
ln
(
1
−
x
)
=
?
\lim_{x \to 0} \frac{\tan^{-1} \left( \frac{-x}{\sqrt{1 - x^2}} \right)}{\ln(1 - x)} = ?
x
→
0
lim
ln
(
1
−
x
)
tan
−
1
(
1
−
x
2
−
x
)
=
?
IPU CET - 2016
IPU CET
Mathematics
Limits
If
i
=
−
1
i = \sqrt{-1}
i
=
−
1
, then
lim
n
→
∞
(
n
+
2
i
)
(
3
+
7
i
n
)
(
2
−
i
)
(
6
n
2
+
1
)
\lim_{n \to \infty} \frac{(n + 2i)(3 + 7in)}{(2 - i)(6n^2 + 1)}
n
→
∞
lim
(
2
−
i
)
(
6
n
2
+
1
)
(
n
+
2
i
)
(
3
+
7
in
)
is equal to:
IPU CET - 2016
IPU CET
Mathematics
Limits
lim
x
→
π
/
4
(
1
−
cos
x
)
2
tan
2
x
−
sin
2
x
is equal to:
\lim_{x \to \pi/4} \frac{(1 - \cos x)^2}{\tan^2 x - \sin^2 x} \text{ is equal to:}
x
→
π
/4
lim
tan
2
x
−
sin
2
x
(
1
−
cos
x
)
2
is equal to:
IPU CET - 2016
IPU CET
Mathematics
Limits
Choose the most appropriate options.
The period of the function
f
(
x
)
=
∣
sin
x
∣
−
∣
cos
x
∣
f(x) = |\sin x| - |\cos x|
f
(
x
)
=
∣
sin
x
∣
−
∣
cos
x
∣
is
IPU CET - 2016
IPU CET
Mathematics
Limits