This integral can be solved using standard integration techniques. First, factor out constants:
\[
I = \int_0^\pi \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}.
\]
We use the standard formula for integrals of the form \( \int \frac{dx}{A \cos^2 x + B \sin^2 x} \). The result for this integral is:
\[
I = \frac{\pi}{\sqrt{a^2 + b^2}}.
\]
Thus, the evaluated result is:
\[
\int_0^\pi \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{\pi}{\sqrt{a^2 + b^2}}.
\]