To solve \( \int \frac{\sin^{-1} \left(\frac{x}{\sqrt{a + x}}\right)}{\sqrt{a + x}} \, dx \), use the substitution \( u = \frac{x}{\sqrt{a + x}} \).
Then, \( du = \frac{dx}{\sqrt{a + x}} - \frac{x dx}{2(a + x)^{3/2}} \), simplifying to \( dx = \sqrt{a + x} \, du \) after some algebraic manipulation. Substitute and solve: \[ \int \sin^{-1}(u) \, du = u \sin^{-1}(u) + \sqrt{1 - u^2} + C \] Substituting back for \( x \) and simplifying yields: \[ (a + x) \tan^{-1}\left(\frac{x}{\sqrt{a}}\right) - \sqrt{ax} + C \]