We are given the integral: \[ \int \frac{\sec^2(\sqrt{2x+5})}{\sqrt{2x+5}} \, dx \] To solve this, let's substitute \( u = \sqrt{2x + 5} \). This implies: \[ du = \frac{1}{2\sqrt{2x + 5}} \cdot 2 \, dx = \frac{1}{\sqrt{2x+5}} \, dx \]
Thus, the integral becomes: \[ \int \sec^2(u) \, du = \tan(u) + C \] Now, substituting \( u = \sqrt{2x+5} \), we get: \[ \tan(\sqrt{2x+5}) + C \] The correct answer is \( \frac{1}{2} \log |2x + 5| \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
Evaluate:
\[ I = \int_2^4 \left( |x - 2| + |x - 3| + |x - 4| \right) dx \]