We are given the integral: \[ \int \frac{\sec^2(\sqrt{2x+5})}{\sqrt{2x+5}} \, dx \] To solve this, let's substitute \( u = \sqrt{2x + 5} \). This implies: \[ du = \frac{1}{2\sqrt{2x + 5}} \cdot 2 \, dx = \frac{1}{\sqrt{2x+5}} \, dx \]
Thus, the integral becomes: \[ \int \sec^2(u) \, du = \tan(u) + C \] Now, substituting \( u = \sqrt{2x+5} \), we get: \[ \tan(\sqrt{2x+5}) + C \] The correct answer is \( \frac{1}{2} \log |2x + 5| \).
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals