Let the given integral be: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \sqrt{\cot x}} \, dx \]
We use the property of definite integrals: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \]
Here, \( a = \frac{\pi}{6}, b = \frac{\pi}{3} \Rightarrow a + b = \frac{\pi}{2} \). So,
\[
I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \sqrt{\cot\left(\frac{\pi}{2} - x\right)}} \, dx
= \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \sqrt{\tan x}} \, dx
\]
Now add the two forms:
\[
2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left( \frac{1}{1 + \sqrt{\cot x}} + \frac{1}{1 + \sqrt{\tan x}} \right) dx
\]
Let \( A = \frac{1}{1 + \sqrt{\cot x}} + \frac{1}{1 + \sqrt{\tan x}} \).
Let \( \sqrt{\cot x} = a \Rightarrow \sqrt{\tan x} = \frac{1}{a} \), since \( \tan x = \frac{1}{\cot x} \)
Then:
\[
A = \frac{1}{1 + a} + \frac{1}{1 + \frac{1}{a}} = \frac{1}{1 + a} + \frac{a}{a + 1} = \frac{1 + a}{1 + a} = 1
\]
So, \( 2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 \, dx = \left[ x \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6} \Rightarrow I = \frac{\pi}{12} \)