We are asked to evaluate the integral: \[ \int \frac{1}{x(x^4 + 1)} \, dx \] Using partial fraction decomposition, we can write the integrand as: \[ \frac{1}{x(x^4 + 1)} = \frac{A}{x} + \frac{B x^3 + C x^2 + D x + E}{x^4 + 1} \] Simplifying and solving the coefficients (details omitted for brevity), we get: \[ \int \frac{1}{x(x^4 + 1)} \, dx = \frac{1}{2} \log |x^4 + 1| \]
Thus, the correct answer is \( \frac{1}{2} \log |x^4 + 1| \).