We are asked to evaluate the integral:
\[
\int \frac{1}{x(x^4 + 1)} \, dx
\]
Using partial fraction decomposition, we can write the integrand as:
\[
\frac{1}{x(x^4 + 1)} = \frac{A}{x} + \frac{B x^3 + C x^2 + D x + E}{x^4 + 1}
\]
Simplifying and solving the coefficients (details omitted for brevity), we get:
\[
\int \frac{1}{x(x^4 + 1)} \, dx = \frac{1}{2} \log |x^4 + 1|
\]
Thus, the correct answer is \( \frac{1{2} \log |x^4 + 1|} \).