We are asked to evaluate the integral: \[ \int \frac{1}{x(x^4 + 1)} \, dx \] Using partial fraction decomposition, we can write the integrand as: \[ \frac{1}{x(x^4 + 1)} = \frac{A}{x} + \frac{B x^3 + C x^2 + D x + E}{x^4 + 1} \] Simplifying and solving the coefficients (details omitted for brevity), we get: \[ \int \frac{1}{x(x^4 + 1)} \, dx = \frac{1}{2} \log |x^4 + 1| \]
Thus, the correct answer is \( \frac{1}{2} \log |x^4 + 1| \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
Evaluate:
\[ I = \int_2^4 \left( |x - 2| + |x - 3| + |x - 4| \right) dx \]