Step 1: Substituting \( u = x^5 + 1 \)
Let:
\[
u = x^5 + 1 \Rightarrow du = 5x^4 dx.
\]
Rewriting the integral:
\[
\int \frac{1}{x^5 \sqrt{x^5+1}} dx = \int \frac{du}{5x^5 u^{1/2}}.
\]
Step 2: Expressing in terms of \( u \)
Since \( x^5 = u - 1 \), we rewrite:
\[
\int \frac{du}{5(u - 1) u^{1/2}}.
\]
Using substitution and simplifying, we integrate:
\[
I = -\frac{(x^5+1)^{4/5}}{4x^4} + C.
\]