The given integral is: \[ \int e^{-x} \cdot e^{3x} \, dx \] Using the property of exponents that \( e^a \cdot e^b = e^{a + b} \), we can combine the exponents: \[ \int e^{-x + 3x} \, dx = \int e^{2x} \, dx \] Now, integrate \( e^{2x} \) with respect to \( x \): \[ \int e^{2x} \, dx = \frac{e^{2x}}{2} + C \]
Thus, the correct answer is \( \frac{e^{2x}}{2} + C \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
Evaluate:
\[ I = \int_2^4 \left( |x - 2| + |x - 3| + |x - 4| \right) dx \]