The given integral is:
\[
\int e^{-x} \cdot e^{3x} \, dx
\]
Using the property of exponents that \( e^a \cdot e^b = e^{a + b} \), we can combine the exponents:
\[
\int e^{-x + 3x} \, dx = \int e^{2x} \, dx
\]
Now, integrate \( e^{2x} \) with respect to \( x \):
\[
\int e^{2x} \, dx = \frac{e^{2x}}{2} + C
\]
Thus, the correct answer is \( \frac{e^{2x}{2} + C} \).