The given integral is: \[ \int e^{-x} \cdot e^{3x} \, dx \] Using the property of exponents that \( e^a \cdot e^b = e^{a + b} \), we can combine the exponents: \[ \int e^{-x + 3x} \, dx = \int e^{2x} \, dx \] Now, integrate \( e^{2x} \) with respect to \( x \): \[ \int e^{2x} \, dx = \frac{e^{2x}}{2} + C \]
Thus, the correct answer is \( \frac{e^{2x}}{2} + C \).
If, \( I_n = \int_{-\pi}^{\pi} \frac{\cos(nx)(1+2^x)}{dx} \), where \( n = 0, 1, 2, \dots \), then which of the following are correct?
A. \( I_n = I_{n+2} \), for all \( n = 0, 1, 2, \dots \)
B. \( I_n = 0 \), for all \( n = 0, 1, 2, \dots \)
C. \( \sum_{n=1}^{10} I_n = 2^{10} \)
D. \( \sum_{n=1}^{10} I_n = 0 \)