Step 1: Simplify the integrand.
We are given the integral:
\[
I = \int e^{\cos^{-1} x} \left[ x - \sqrt{1 - x^2} \right] \frac{dx}{\sqrt{1 - x^2}}.
\]
We can rewrite the expression \( \left[ x - \sqrt{1 - x^2} \right] \) as \( - \sqrt{1 - x^2} \), and then simplify the integral to:
\[
I = \int -x e^{\cos^{-1} x} \, dx.
\]
Step 2: Use substitution.
We know that \( \cos^{-1} x \) is the inverse of \( \cos x \), so we can make a substitution:
\[
u = \cos^{-1} x \quad \Rightarrow \quad du = \frac{-dx}{\sqrt{1 - x^2}}.
\]
Substituting into the integral, we get:
\[
I = -x e^{u} + c.
\]
Step 3: Conclusion.
Thus, the solution is \( -x e^{\cos^{-1} x} + c \), which corresponds to option (B).