Question:

Evaluate the integral:
\[ \int_{0}^{\infty} e^{-x} \delta(\lambda^2 - 4)dx \]

Show Hint

Use the Dirac delta function property for evaluating integrals.
Updated On: Mar 26, 2025
  • \( \frac{1}{4e^2} \)
  • \( 1 \)
  • \( \frac{1}{4e^2} \)
  • \( \frac{1}{2} (e^{-2} + e^2) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Using the sifting property of the Dirac delta function:
\[ \int f(x) \delta(g(x)) dx = \sum_i \frac{f(x_i)}{|g'(x_i)|} \] where \( g(\lambda) = \lambda^2 - 4 \) gives \( \lambda = \pm2 \). Evaluating for \( \lambda = 2 \), we get:
\[ \frac{e^{-2}}{2 \cdot 2} = \frac{1}{4e^2} \]
Was this answer helpful?
0
0