1. >Banaras Hindu University Postgraduate Entrance Test
  2. >Mathematics
Found 7  QuestionsSET DEFAULT
Selected Filters
    Banaras Hindu University Postgraduate ... Mathematics
Exams
Years
Subjects
Topics

List of top Mathematics Questions asked in Banaras Hindu University Postgraduate Entrance Test

Given the Bessel function:
$$ J_0(x) = 1 - \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 2^2} - \frac{x^6}{2^2 \cdot 2^2 \cdot 2^2} + \dots $$ The Bessel function $ J_1(x) $ is given by:
  • BHU PET - 2019
  • BHU PET
  • Mathematics
  • Special Functions
One solution (about $ x = 0 $ ) of the differential equation
$$ x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 0 $$ is $ y_1(x) = c_1x^2$ . A second linearly independent solution (with another constant $ c_2 $ ) is:
  • BHU PET - 2019
  • BHU PET
  • Mathematics
  • Differential Equations
The first non-zero Fourier coefficient in the expansion of \( \sin^3(x) \) is:
  • BHU PET - 2019
  • BHU PET
  • Mathematics
  • Fourier series
The unit vectors \( \hat{\theta} \) and \( \hat{\phi} \) (where \( \theta \) and \( \phi \) are the polar and azimuthal angles, respectively), in the spherical coordinate system, under the operation of inversion (i.e., reflection through the origin) have:
  • BHU PET - 2019
  • BHU PET
  • Mathematics
  • Vectors
The only possible real eigenvalue of a Skew-Hermitian matrix is:
  • BHU PET - 2019
  • BHU PET
  • Mathematics
  • Vectors
The matrix \( A = \begin{bmatrix} -2 & 1 & 2
1 & 2 & 1
2 & 1 & -2 \end{bmatrix} \) is:

  • BHU PET - 2019
  • BHU PET
  • Mathematics
  • Matrix
Evaluate the integral:
\[ \int_{0}^{\infty} e^{-x} \delta(\lambda^2 - 4)dx \]
  • BHU PET - 2019
  • BHU PET
  • Mathematics
  • Integration