We are given the integral:
\[
I = \int \frac{\sin 4x}{\sin 2x} \, dx
\]
This can be simplified using a known trigonometric identity for \( \sin 4x \) in terms of \( \sin 2x \):
\[
\sin 4x = 2 \sin 2x \cos 2x
\]
Substituting this into the integral:
\[
I = \int \frac{2 \sin 2x \cos 2x}{\sin 2x} \, dx
\]
The \( \sin 2x \) terms cancel out, leaving:
\[
I = \int 2 \cos 2x \, dx
\]
Now integrate \( 2 \cos 2x \):
\[
I = 2 \times \frac{\sin 2x}{2} = \sin 2x
\]
Thus, the answer is \( 4 \).