We are asked to evaluate the following integral:
\[
\int \frac{\sec x}{(\sec x + \tan x)^2} \, dx
\]
We will use the substitution method. Let:
\[
u = \sec x + \tan x
\]
Then, the derivative of \( u \) is:
\[
du = (\sec x \tan x + \sec^2 x) \, dx
\]
Now, rewrite the integral in terms of \( u \). Notice that:
\[
\frac{\sec x}{u^2} = \frac{du}{u^2}
\]
Now integrate:
\[
\int \frac{1}{u^2} \, du = -\frac{1}{u}
\]
Substitute back \( u = \sec x + \tan x \):
\[
-\frac{1}{\sec x + \tan x}
\]
Thus, the correct answer is \( -\frac{1}{\sec x + \tan x} \).