To solve the integral \( \int \frac{1 - \cos x}{\cos x(1 + \cos x)} \, dx \), we proceed step by step:
Step 1: Simplify the integrand
We first simplify the integrand:
\[
\frac{1 - \cos x}{\cos x(1 + \cos x)} = \frac{(1 - \cos x)}{\cos x} \cdot \frac{1}{1 + \cos x}
\]
This can be split as:
\[
= \frac{1}{\cos x} - \frac{\cos x}{\cos x} \cdot \frac{1}{1 + \cos x}
\]
which simplifies to:
\[
= \sec x - \frac{1}{1 + \cos x}
\]
Step 2: Use a trigonometric identity
We use the identity \( 1 + \cos x = 2 \cos^2 \left( \frac{x}{2} \right) \), so the second term becomes:
\[
\frac{1}{1 + \cos x} = \frac{1}{2 \cos^2 \left( \frac{x}{2} \right)}
\]
Thus, the integral becomes:
\[
\int \sec x \, dx - \int \frac{1}{2 \cos^2 \left( \frac{x}{2} \right)} \, dx
\]
Step 3: Integrate the terms
The first integral is straightforward:
\[
\int \sec x \, dx = \log | \sec x + \tan x |
\]
For the second integral, we use the identity \( \sec^2 \left( \frac{x}{2} \right) \) for the second term:
\[
\int \frac{1}{2 \cos^2 \left( \frac{x}{2} \right)} \, dx = \int \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) \, dx = \tan \left( \frac{x}{2} \right)
\]
Thus, the integral becomes:
\[
\log | \sec x + \tan x | - 2 \left( \csc x + \cot x \right) + C
\]