We are given the integral:
\[
\int e^{2\theta} \left( 2 \cos^2 \theta - \sin 2\theta \right) \, d\theta
\]
First, note that:
\[
\sin 2\theta = 2 \sin \theta \cos \theta
\]
So, the integral becomes:
\[
\int e^{2\theta} \left( 2 \cos^2 \theta - 2 \sin \theta \cos \theta \right) \, d\theta
\]
We can now split this into two integrals:
\[
2 \int e^{2\theta} \cos^2 \theta \, d\theta - 2 \int e^{2\theta} \sin \theta \cos \theta \, d\theta
\]
The second term is straightforward:
\[
\int e^{2\theta} \sin \theta \cos \theta \, d\theta = \frac{1}{2} e^{2\theta} \sin 2\theta
\]
Thus, the result of the integration is:
\[
e^{2\theta} \cos^2 \theta - \frac{1}{2} \sin 2\theta
\]
Thus, the correct answer is \( e^{2\theta \cos^2 \theta - \frac{1}{2} \sin 2\theta} \).