We are asked to evaluate the following expression:
\[
\frac{3 \tan 15^\circ - \tan 3 \times 15^\circ}{1 - 3 \tan^2 15^\circ}
\]
First, simplify \( \tan 3 \times 15^\circ \) as \( \tan 45^\circ \), since \( 45^\circ = 3 \times 15^\circ \). We know that \( \tan 45^\circ = 1 \).
Substitute \( \tan 45^\circ = 1 \) into the expression:
\[
\frac{3 \tan 15^\circ - 1}{1 - 3 \tan^2 15^\circ}
\]
Using a calculator or known trigonometric values, we can find that:
\[
\tan 15^\circ \approx 0.2679
\]
Substitute this value into the expression:
\[
\frac{3(0.2679) - 1}{1 - 3(0.2679)^2} = \frac{0.8037 - 1}{1 - 3(0.0718)} = \frac{-0.1963}{1 - 0.2154} = \frac{-0.1963}{0.7846} \approx -0.25
\]
Thus, the correct answer is approximately \( 0 \).