We are asked to evaluate the following expression:
\[
\frac{\cos 75^\circ - \cos 15^\circ}{\cos 75^\circ + \cos 15^\circ}
\]
We can use the trigonometric identity for the sum and difference of cosines:
\[
\cos A - \cos B = -2 \sin\left( \frac{A+B}{2} \right) \sin\left( \frac{A-B}{2} \right)
\]
\[
\cos A + \cos B = 2 \cos\left( \frac{A+B}{2} \right) \cos\left( \frac{A-B}{2} \right)
\]
Using these identities, we get:
\[
\cos 75^\circ - \cos 15^\circ = -2 \sin\left( \frac{75^\circ + 15^\circ}{2} \right) \sin\left( \frac{75^\circ - 15^\circ}{2} \right) = -2 \sin(45^\circ) \sin(30^\circ)
\]
\[
\cos 75^\circ + \cos 15^\circ = 2 \cos\left( \frac{75^\circ + 15^\circ}{2} \right) \cos\left( \frac{75^\circ - 15^\circ}{2} \right) = 2 \cos(45^\circ) \cos(30^\circ)
\]
Now, substituting these values into the original expression:
\[
\frac{-2 \sin(45^\circ) \sin(30^\circ)}{2 \cos(45^\circ) \cos(30^\circ)} = \frac{- \sin(45^\circ) \sin(30^\circ)}{\cos(45^\circ) \cos(30^\circ)}
\]
Since \( \sin(45^\circ) = \cos(45^\circ) \) and simplifying:
\[
\frac{- \sin(30^\circ)}{\cos(30^\circ)} = - \tan(30^\circ) = 0
\]
Thus, the value of the expression is \( 0 \).