We are given the function:
\[
y = \sec(\tan^{-1}(x))
\]
To differentiate this function, we will use the chain rule. First, recall that \( \sec(\theta) = \frac{1}{\cos(\theta)} \), and the derivative of \( \sec(\theta) \) is \( \sec(\theta) \tan(\theta) \).
Let \( \theta = \tan^{-1}(x) \), so that:
\[
y = \sec(\theta)
\]
Differentiating \( y \) with respect to \( x \), we get:
\[
\frac{dy}{dx} = \sec(\theta) \tan(\theta) \cdot \frac{d\theta}{dx}
\]
Now, \( \frac{d\theta}{dx} = \frac{1}{1 + x^2} \) (from the derivative of \( \tan^{-1}(x) \)).
Thus, the derivative of \( y \) becomes:
\[
\frac{dy}{dx} = \sec(\tan^{-1}(x)) \cdot \tan(\tan^{-1}(x)) \cdot \frac{1}{1 + x^2}
\]
We know that \( \sec(\tan^{-1}(x)) = \sqrt{1 + x^2} \) and \( \tan(\tan^{-1}(x)) = x \), so:
\[
\frac{dy}{dx} = \sqrt{1 + x^2} \cdot x \cdot \frac{1}{1 + x^2} = \frac{x}{\sqrt{1 + x^2}}
\]
Now, substituting \( x = \sqrt{3} \):
\[
\frac{dy}{dx} = \frac{\sqrt{3}}{\sqrt{1 + 3}} = \frac{\sqrt{3}}{2}
\]
Thus, the value of \( \frac{dy}{dx} \) at \( x = \sqrt{3} \) is 1.