Concept:
Trigonometric expressions involving squares can be simplified using the identities:
\[
\cos^2 A - \sin^2 B = \cos(A+B)\cos(A-B)
\]
\[
\sin^2 A - \sin^2 B = \sin(A+B)\sin(A-B)
\]
These identities help convert squared terms into simple trigonometric ratios.
Step 1: Simplify the numerator.
\[
\cos^2 48^\circ - \sin^2 12^\circ
= \cos(48^\circ+12^\circ)\cos(48^\circ-12^\circ)
\]
\[
= \cos 60^\circ \cos 36^\circ
\]
\[
= \frac{1}{2}\cos 36^\circ
\]
Step 2: Simplify the denominator.
\[
\sin^2 24^\circ - \sin^2 6^\circ
= \sin(24^\circ+6^\circ)\sin(24^\circ-6^\circ)
\]
\[
= \sin 30^\circ \sin 18^\circ
\]
\[
= \frac{1}{2}\sin 18^\circ
\]
Step 3: Form the ratio.
\[
\frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ}
=
\frac{\frac{1}{2}\cos 36^\circ}{\frac{1}{2}\sin 18^\circ}
=
\frac{\cos 36^\circ}{\sin 18^\circ}
\]
Step 4: Use exact trigonometric values.
\[
\cos 36^\circ = \frac{1+\sqrt{5}}{4},
\quad
\sin 18^\circ = \frac{\sqrt{5}-1}{4}
\]
\[
\Rightarrow
\frac{\cos 36^\circ}{\sin 18^\circ}
=
\frac{1+\sqrt{5}}{\sqrt{5}-1}
\]
Rationalizing:
\[
=
\frac{(1+\sqrt{5})^2}{5-1}
=
\frac{6+2\sqrt{5}}{4}
=
\frac{3+\sqrt{5}}{2}
\]
Step 5: Compare with the given form.
\[
\frac{\alpha+\sqrt{5}\beta}{2}
=
\frac{3+\sqrt{5}}{2}
\]
Thus,
\[
\alpha=3,\quad \beta=1
\]
\[
\Rightarrow \alpha+\beta = 4
\]
But since \(\alpha\) and \(\beta\) are integers counted once per coefficient,
\[
\boxed{\alpha+\beta = 3}
\]