The cell reaction is written as:
\[
\text{Sn}(s) \mid \text{Sn}^{2+} (\text{0.004 M}) \parallel \text{H}^+ (\text{0.02 M}) \mid \text{H}_2 (\text{1 Bar}) \mid \text{Pt}(s)
\]
The cell potential \(E_{\text{cell}}\) can be calculated using the Nernst equation:
\[
E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.0591}{n} \log \frac{[\text{products}]}{[\text{reactants}]}
\]
Where:
- \(E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}}\),
- \(E^\circ_{\text{cathode}} = E^\circ_{\text{H}^+/\text{H}_2} = 0.00 \, \text{V}\),
- \(E^\circ_{\text{anode}} = E^\circ_{\text{Sn}^{2+}/\text{Sn}} = -0.14 \, \text{V}\),
- \(n = 2\) (since the reaction involves the transfer of 2 electrons).
Now, calculate the cell potential:
\[
E_{\text{cell}} = 0.00 - (-0.14) - \frac{0.0591}{2} \log \frac{[\text{H}^+]^2}{[\text{Sn}^{2+}]}
\]
Substitute the given concentrations:
\[
E_{\text{cell}} = 0.14 - \frac{0.0591}{2} \log \frac{(0.02)^2}{0.004}
\]
Simplifying the logarithmic term:
\[
E_{\text{cell}} = 0.14 - \frac{0.0591}{2} \log \frac{0.0004}{0.004}
\]
\[
E_{\text{cell}} = 0.14 - \frac{0.0591}{2} \log 0.1
\]
Since \(\log 0.1 = -1\):
\[
E_{\text{cell}} = 0.14 - \frac{0.0591}{2} (-1)
\]
\[
E_{\text{cell}} = 0.14 + 0.02955
\]
\[
E_{\text{cell}} = 0.16955 \, \text{V}
\]
Thus, the e.m.f. of the cell is 0.170 V.