Step 1: Evaluate
\(\displaystyle 2\sin^{-1}\frac{2}{\sqrt{13}}\)
Let \(\sin\alpha=\dfrac{2}{\sqrt{13}}\).
Then \(\cos\alpha=\dfrac{3}{\sqrt{13}}\).
\[
\tan\alpha=\frac{2}{3}
\]
Using the identity:
\[
\tan(2\alpha)=\frac{2\tan\alpha}{1-\tan^2\alpha}
=\frac{2\cdot\frac{2}{3}}{1-\left(\frac{2}{3}\right)^2}
=\frac{\frac{4}{3}}{\frac{5}{9}}
=\frac{12}{5}
\]
Hence,
\[
\tan\!\left(2\sin^{-1}\frac{2}{\sqrt{13}}\right)=\frac{12}{5}
\]
Step 2: Evaluate
\(\displaystyle 2\cos^{-1}\!\left(\frac{3}{\sqrt{10}}\right)\)
Let \(\cos\beta=\dfrac{3}{\sqrt{10}}\).
Then \(\sin\beta=\dfrac{1}{\sqrt{10}}\).
\[
\tan\beta=\frac{1}{3}
\]
Using:
\[
\tan(2\beta)=\frac{2\tan\beta}{1-\tan^2\beta}
=\frac{2\cdot\frac{1}{3}}{1-\left(\frac{1}{3}\right)^2}
=\frac{\frac{2}{3}}{\frac{8}{9}}
=\frac{3}{4}
\]
Thus,
\[
\tan\!\left(2\cos^{-1}\frac{3}{\sqrt{10}}\right)=\frac{3}{4}
\]
Step 3: Use the identity for difference
Let:
\[
A=2\sin^{-1}\frac{2}{\sqrt{13}}, \quad
B=2\cos^{-1}\frac{3}{\sqrt{10}}
\]
\[
\tan(A-B)=\frac{\tan A-\tan B}{1+\tan A\,\tan B}
\]
\[
=\frac{\frac{12}{5}-\frac{3}{4}}{1+\frac{12}{5}\cdot\frac{3}{4}}
=\frac{\frac{48-15}{20}}{1+\frac{36}{20}}
=\frac{\frac{33}{20}}{\frac{56}{20}}
=\frac{33}{56}
\]
\[
\boxed{\dfrac{33}{56}}
\]