Question:

Evaluate \[ \int \frac{dx}{(x+2)\sqrt{x+1}} \]

Show Hint

Radical integrals often simplify quickly after an appropriate substitution.
Updated On: Feb 2, 2026
  • \(\tan^{-1}(\sqrt{x+1}) + c\)
  • \(2\tan^{-1}(\sqrt{x+1}) + c\)
  • \(2\tan^{-1}(\sqrt{x+2}) + c\)
  • \(\tan^{-1}(\sqrt{x+2}) + c\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Use substitution.
Let \(x + 1 = t^2\). Then \[ dx = 2t\,dt, \quad x + 2 = t^2 + 1 \]
Step 2: Substitute into the integral.
\[ \int \frac{dx}{(x+2)\sqrt{x+1}} = \int \frac{2t\,dt}{(t^2+1)t} = \int \frac{2}{t^2+1}\,dt \]
Step 3: Integrate.
\[ = 2\tan^{-1} t + c \]
Step 4: Substitute back.
\[ = 2\tan^{-1}(\sqrt{x+1}) + c \]
Was this answer helpful?
0
0