Step 1: Use substitution.
Let \( u = \sqrt{x} \), then \( du = \frac{1}{2\sqrt{x}} dx \), so the integral becomes:
\[
\int \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx = \int 2 \cos u \, du
\]
Step 2: Integrate.
Now, integrate \( \int 2 \cos u \, du = 2 \sin u + c \). Substituting back \( u = \sqrt{x} \), we get:
\[
2 \sin \sqrt{x} + c
\]
Step 3: Conclusion.
The correct answer is (B) \( 2 \sin \sqrt{x} + c \).