Question:

Evaluate \( \int \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx \)

Show Hint

For integrals involving square roots, use substitution to simplify the expression and make the integration easier.
Updated On: Jan 26, 2026
  • \( \frac{1}{2} \cos \sqrt{x} + c \)
  • \( 2 \sin \sqrt{x} + c \)
  • \( \frac{1}{2} \sin \sqrt{x} + c \)
  • \( 2 \cos \sqrt{x} + c \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Use substitution.
Let \( u = \sqrt{x} \), then \( du = \frac{1}{2\sqrt{x}} dx \), so the integral becomes: \[ \int \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx = \int 2 \cos u \, du \]
Step 2: Integrate.
Now, integrate \( \int 2 \cos u \, du = 2 \sin u + c \). Substituting back \( u = \sqrt{x} \), we get: \[ 2 \sin \sqrt{x} + c \]
Step 3: Conclusion.
The correct answer is (B) \( 2 \sin \sqrt{x} + c \).
Was this answer helpful?
0
0