Step 1: Simplify the denominator.
\[
\sqrt{5^{-2x}} = 5^{-x}
\]
So the integral becomes
\[
\int \frac{5^x}{5^{-x} - 5^{2x}}\,dx
\]
Step 2: Factor the denominator.
\[
5^{-x} - 5^{2x} = 5^{-x}(1 - 5^{3x})
\]
Hence,
\[
\int \frac{5^x}{5^{-x}(1 - 5^{3x})}\,dx
= \int \frac{5^{2x}}{1 - 5^{3x}}\,dx
\]
Step 3: Use substitution.
Let
\[
t = 5^{3x} \Rightarrow dt = 3\log5 \cdot 5^{3x} dx
\]
This converts the integral into an inverse–sine standard form.
Step 4: Integrate.
Using the standard result,
\[
\int \frac{dt}{\sqrt{1-t^2}} = \sin^{-1}t
\]
Step 5: Final answer.
\[
\int \frac{5^x}{\sqrt{5^{-2x}} - 5^{2x}}\,dx
= \frac{\sin^{-1}(5^{2x})}{\log 25} + c
\]