>
Exams
>
Mathematics
>
Integral Calculus
>
evaluate int 0 a a x frac 3 2 x 2 dx
Question:
Evaluate
\[ \int_{0}^{a} (a-x)^{\frac{3}{2}} x^2 \, dx \]
Show Hint
Definite integrals of the form \(x^m(a-x)^n\) are best solved using Beta functions.
MHT CET - 2020
MHT CET
Updated On:
Feb 2, 2026
\(-\dfrac{16a^{9/2}}{315}\)
\(\dfrac{16a^{9/2}}{315}\)
\(\dfrac{16a^{7/2}}{315}\)
\(-\dfrac{16a^{7/2}}{315}\)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
Step 1: Use Beta function property.
The integral is of the form \[ \int_{0}^{a} x^m (a-x)^n dx = a^{m+n+1} \frac{\Gamma(m+1)\Gamma(n+1)}{\Gamma(m+n+2)} \]
Step 2: Identify values.
Here \(m=2\), \(n=\frac{3}{2}\).
Step 3: Substitute values.
\[ \int_{0}^{a} (a-x)^{3/2}x^2 dx = a^{9/2}\frac{\Gamma(3)\Gamma(5/2)}{\Gamma(11/2)} = \frac{16a^{9/2}}{315} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Integral Calculus
If
\[ I(x) = 3\int \frac{dx}{(4x+6)\sqrt{4x^2 + 8x + 3}}, \quad I(0) = \frac{\sqrt{3}}{4}, \]
then find \( I(1) \):
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
If \[ \int e^x \left( \frac{x^2 - 2}{\sqrt{1 + x(1 - x)^{3/2}}} \right) \, dx = f(x) + c \quad \text{and} \quad f(0) = 1 \] find \( f\left( \frac{1}{2} \right) \):
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
Find the area bounded by the curves
\[ x^2 + y^2 = 4 \quad \text{and} \quad x^2 + (y-2)^2 = 4. \]
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
If
\[ \int_{0}^{x} t^2 \sin(x - t)\,dt = x^2, \]
then the sum of values of \( x \), where \( x \in [0,100] \), is:
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
The value of
\[ \int_{\frac{\pi}{2}}^{\pi} \frac{dx}{[x]+4} \]
where \([\,\cdot\,]\) denotes the greatest integer function, is
JEE Main - 2026
Mathematics
Integral Calculus
View Solution
View More Questions
Questions Asked in MHT CET exam
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
View More Questions