Step 1: Rewrite the integrand:
\[
\left(\sqrt{x} + \sqrt{a - x}\right) \sqrt{x} = x + \sqrt{x(a - x)}
\]
Step 2: Split the integral:
\[
\int_0^a \left( x + \sqrt{x(a - x)} \right) dx = \int_0^a x \, dx + \int_0^a \sqrt{x(a - x)} \, dx
\]
Step 3: Evaluate the first integral:
\[
\int_0^a x \, dx = \frac{a^2}{2}
\]
Step 4: For the second integral, substitute \(x = a t\), so \(dx = a dt\), limits change from \(x=0 \to t=0\) and \(x=a \to t=1\):
\[
\int_0^a \sqrt{x(a - x)} \, dx = \int_0^1 \sqrt{a t (a - a t)} a dt = a^{2} \int_0^1 \sqrt{t(1 - t)} dt
\]
Step 5: The integral \(\int_0^1 \sqrt{t(1-t)} dt\) is a Beta function \(B(\frac{3}{2}, \frac{3}{2})\) and equals
\[
B\left(\frac{3}{2}, \frac{3}{2}\right) = \frac{\Gamma(\frac{3}{2})^2}{\Gamma(3)} = \frac{\left(\frac{\sqrt{\pi}}{2}\right)^2}{2} = \frac{\pi}{8}
\]
Step 6: So,
\[
\int_0^a \sqrt{x(a - x)} \, dx = a^{2} \cdot \frac{\pi}{8}
\]
Step 7: Therefore,
\[
\int_0^a \left( \sqrt{x} + \sqrt{a - x} \right) \sqrt{x} \, dx = \frac{a^2}{2} + \frac{\pi a^{2}}{8}
\]
However, none of the options directly match this.
---
Check the problem statement or options again?
If instead the integral is:
\[
\int_0^a \left( \sqrt{x} + \sqrt{a - x} \right) dx
\]
or something similar, let me know!
---