Evaluate\(\begin{vmatrix} 1 & x & y\\ 1 & x+y & y\\1&x&x+y \end{vmatrix}\)
\(Δ=\)\(\begin{vmatrix} 1 & x & y\\ 1 & x+y & y\\1&x&x+y \end{vmatrix}\)
Applying \(R_2\rightarrow R_2-R_1\) and \(R_3\rightarrow R_3-R_1\),we have
\(Δ=\)\(\begin{vmatrix} 1 & x & y\\ 0 & y & 0\\0&0&x \end{vmatrix}\)
Expanding along \(C_1\),we have:
\(Δ=1(xy-0)=xy\)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: