Centre at $O \rightarrow(0,0)$ Radius $=O A=1$ Also, the centre of another circle $\rightarrow C(4,3)$ both circle touch externally. Then, distance between centres $=O C$. $=\sqrt{(4-0)^{2}+(3-0)^{2}}=\sqrt{16-9}=5$ Now, $A C=O C-O A$ $A C=5-1=4$ So, the radius of other circle is 4 . Now, the equation of other circle touch externally to the circle $x^{2}+y^{2}=1$ is, $(x-4)^{2}+(y-3)^{2}=16$ $\Rightarrow x^{2}+y^{2}-8 x-6 y+9=0$