Electron beam used in an electron microscope, when accelerated by a voltage of $20 kV$, has a de-Broglie wavelength of $\lambda_0$. If the voltage is increased to $40 kV$, then the de-Broglie wavelength associated with the electron beam would be:
If \( \lambda \) and \( K \) are de Broglie wavelength and kinetic energy, respectively, of a particle with constant mass. The correct graphical representation for the particle will be:
The wavelength of an electron is \( 10^3 \) nm. What is its momentum in kg m s\(^{-1}\)?
A molecule with the formula $ \text{A} \text{X}_2 \text{Y}_2 $ has all it's elements from p-block. Element A is rarest, monotomic, non-radioactive from its group and has the lowest ionization energy value among X and Y. Elements X and Y have first and second highest electronegativity values respectively among all the known elements. The shape of the molecule is:
A transition metal (M) among Mn, Cr, Co, and Fe has the highest standard electrode potential $ M^{n}/M^{n+1} $. It forms a metal complex of the type $[M \text{CN}]^{n+}$. The number of electrons present in the $ e $-orbital of the complex is ... ...
Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$
0.1 mol of the following given antiviral compound (P) will weigh .........x $ 10^{-1} $ g.
Consider the following equilibrium, $$ \text{CO(g)} + \text{H}_2\text{(g)} \rightleftharpoons \text{CH}_3\text{OH(g)} $$ 0.1 mol of CO along with a catalyst is present in a 2 dm$^3$ flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH$_3$OH is formed. The $ K_p $ is ...... x $ 10^7 $ (nearest integer).
Given: $ R = 0.08 \, \text{dm}^3 \, \text{bar} \, \text{K}^{-1} \, \text{mol}^{-1} $
Assume only methanol is formed as the product and the system follows ideal gas behavior.
One of the equations that are commonly used to define the wave properties of matter is the de Broglie equation. Basically, it describes the wave nature of the electron.
Very low mass particles moving at a speed less than that of light behave like a particle and waves. De Broglie derived an expression relating to the mass of such smaller particles and their wavelength.
Plank’s quantum theory relates the energy of an electromagnetic wave to its wavelength or frequency.
E = hν …….(1)
E = mc2……..(2)
As the smaller particle exhibits dual nature, and energy being the same, de Broglie equated both these relations for the particle moving with velocity ‘v’ as,
This equation relating the momentum of a particle with its wavelength is de Broglie equation and the wavelength calculated using this relation is the de Broglie wavelength.