Given expression:
\(\cos^4 \frac{\pi}{12} - \sin^4 \frac{\pi}{12}\)
Using the identity:
\(a^4 - b^4 = (a^2 - b^2)(a^2 + b^2)\)
We rewrite:
\(\cos^4 x - \sin^4 x = (\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x)\)
Since \(\cos^2 x + \sin^2 x = 1\), we simplify to:
\(\cos^2 \frac{\pi}{12} - \sin^2 \frac{\pi}{12}\)
Using the identity:
\(\cos^2 x - \sin^2 x = \cos 2x\)
Substituting \(x = \frac{\pi}{12}\):
\(\cos^2 \frac{\pi}{12} - \sin^2 \frac{\pi}{12} = \cos \frac{\pi}{6}\)
Since \(\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}\), we get:
\(\frac{\sqrt{3}}{2}\)
Let \( M \) and \( m \) respectively be the maximum and the minimum values of \( f(x) = \begin{vmatrix} 1 + \sin^2x & \cos^2x & 4\sin4x \\ \sin^2x & 1 + \cos^2x & 4\sin4x \\ \sin^2x & \cos^2x & 1 + 4\sin4x \end{vmatrix}, \quad x \in \mathbb{R} \) for \( x \in \mathbb{R} \). Then \( M^4 - m^4 \) is equal to:
If \( \alpha>\beta>\gamma>0 \), then the expression \[ \cot^{-1} \beta + \left( \frac{1 + \beta^2}{\alpha - \beta} \right) + \cot^{-1} \gamma + \left( \frac{1 + \gamma^2}{\beta - \gamma} \right) + \cot^{-1} \alpha + \left( \frac{1 + \alpha^2}{\gamma - \alpha} \right) \] is equal to: