Limiting Molar Conductivities of ions :
$\lambda^0_{H^+} : 349.8 \text{ Sem}^2 \text{mol}^{-1}$
$\lambda^0_{Na^+} : 50.11 \text{ Sem}^2 \text{mol}^{-1}$
$\lambda^0_{K^+} : 73.52 \text{ Sem}^2 \text{mol}^{-1}$
$\lambda^0_{Ca^{2+}} : 119 \text{ Sem}^2 \text{mol}^{-1}$
$\lambda^0_{Mg^{2+}} : 106.12 \text{ Sem}^2 \text{mol}^{-1}$
Therefore correct order of limiting molar conductivity of cations will be -
$H^+>Ca^{2+}>Mg^{2+}>K^+>Na^+$
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: