Limiting Molar Conductivities of ions :
$\lambda^0_{H^+} : 349.8 \text{ Sem}^2 \text{mol}^{-1}$
$\lambda^0_{Na^+} : 50.11 \text{ Sem}^2 \text{mol}^{-1}$
$\lambda^0_{K^+} : 73.52 \text{ Sem}^2 \text{mol}^{-1}$
$\lambda^0_{Ca^{2+}} : 119 \text{ Sem}^2 \text{mol}^{-1}$
$\lambda^0_{Mg^{2+}} : 106.12 \text{ Sem}^2 \text{mol}^{-1}$
Therefore correct order of limiting molar conductivity of cations will be -
$H^+>Ca^{2+}>Mg^{2+}>K^+>Na^+$
If the molar conductivity ($\Lambda_m$) of a 0.050 mol $L^{–1}$ solution of a monobasic weak acid is 90 S $cm^{2} mol^{–1}$, its extent (degree) of dissociation will be:
[Assume: $\Lambda^0$ = 349.6 S $cm^{2} mol^{–1}$ and $\Lambda^0_{\text{acid}}$ = 50.4 S$ cm^{2} mol^{–1}$]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to: