Let $ \vec{w} = \hat{i} + \hat{j} - 2\hat{k} $, and $ \vec{u} $ and $ \vec{v} $ be two vectors, such that $ \vec{u} \times \vec{v} = \vec{w} $ and $ \vec{v} \times \vec{w} = \vec{u} $. Let $ \alpha, \beta, \gamma $, and $ t $ be real numbers such that: $$ \vec{u} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}, $$ and the system of equations is: $$ -t\alpha + \beta + \gamma = 0 \quad \cdots (1) $$ $$ \alpha - t\beta + \gamma = 0 \quad \cdots (2) $$ $$ \alpha + \beta - t\gamma = 0 \quad \cdots (3) $$ Match each entry in List-I to the correct entry in List-II and choose the correct option.
List-I
List-II
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?
Let \( \vec{a} = 2\hat{i} - 3\hat{j} + \hat{k} \), \( \vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \) and a vector \( \vec{c} \) be such that \[ (\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} \] and \[ \vec{a} \cdot \vec{c} = 3. \] If \( \vec{b} \times \vec{c} = \vec{d} \), then find \( |\vec{a} \cdot \vec{d}| \).
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?