Question:

Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?

Show Hint

Use dot product for angle geometry, and coordinate geometry for line equations. Convert all geometry constraints into algebraic equations to solve efficiently.
Updated On: May 19, 2025
  • The equation of the line joining \( P \) and \( Q \) is \( 2x + 3y = 3(1 + \sqrt{3}) \)
  • The equation of the line joining \( P \) and \( Q \) is \( 2x + y = 3(1 + \sqrt{3}) \)
  • If \( N_2 = (x_2, 0) \), then \( 3|N_2Q| = 2|N_2S| \)
  • If \( N_1 = (x_1, 0) \), then \( 9|N_1P| = 4|N_1R| \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, C, D

Solution and Explanation

Step 1: Use angle information to find coordinates Given \( \angle ROM = \frac{\pi}{6} \) and \( \angle SOM = \frac{\pi}{3} \), use triangle geometry to find coordinates of \( R \) and \( S \) on the circle \( x^2 + y^2 = 9 \). Let \( M = (3, 0) \), \( O = (0, 0) \) From triangle \( \angle ROM = \frac{\pi}{6} \), use Law of Sines: \[ \sin(\angle ROM) = \frac{RM}{RO} \cdot \sin(\angle RMO) \Rightarrow \sin\left(\frac{\pi}{6}\right) = \frac{RM}{RO} \cdot \sin(\angle RMO) \] But more directly, since \( R \) lies on vertical line \( x = x_1 \) and on the circle \( x^2 + y^2 = 9 \), we can use coordinate geometry. Let \( R = (x_1, y_R) \in C \Rightarrow x_1^2 + y_R^2 = 9 \Rightarrow y_R = \sqrt{9 - x_1^2} \) Similarly, since angle \( \angle ROM = \frac{\pi}{6} \), use dot product formula: \[ \cos(\angle ROM) = \frac{\vec{OR} \cdot \vec{OM}}{|OR||OM|} = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] Let \( R = (x_1, y_R) \), \( M = (3, 0) \), \( O = (0, 0) \) So, \[ \vec{OR} \cdot \vec{OM} = x_1 \cdot 3 + y_R \cdot 0 = 3x_1 \\ |OR| = \sqrt{x_1^2 + y_R^2} = 3,\quad |OM| = 3 \] \[ \Rightarrow \frac{3x_1}{3 \cdot 3} = \frac{\sqrt{3}}{2} \Rightarrow x_1 = \frac{3\sqrt{3}}{2} \] Now use circle equation: \[ x_1^2 + y_R^2 = 9 \Rightarrow \left(\frac{9 \cdot 3}{4}\right) + y_R^2 = 9 \Rightarrow y_R^2 = 9 - \frac{27}{4} = \frac{9}{4} \Rightarrow y_R = \frac{3}{2} \] So \( R = \left( \frac{3\sqrt{3}}{2}, \frac{3}{2} \right) \) Similarly for \( S \), \( x_2 = \frac{3\sqrt{3}}{2} \), angle \( \angle SOM = \frac{\pi}{3} \), we get: \[ \cos\left( \frac{\pi}{3} \right) = \frac{3x_2}{9} = \frac{1}{2} \Rightarrow x_2 = \frac{3}{2} \Rightarrow y_S = \sqrt{9 - x_2^2} = \sqrt{9 - \frac{9}{4}} = \sqrt{\frac{27}{4}} = \frac{3\sqrt{3}}{2} \] So \( S = \left( \frac{3}{2}, \frac{3\sqrt{3}}{2} \right) \)
Step 2: Use ellipse equation to get points P and Q Given ellipse: \( \frac{x^2}{9} + \frac{y^2}{4} = 1 \) Let \( P = (x_1, y_1) \), \( x_1 = \frac{3\sqrt{3}}{2} \), solve for \( y_1 \): \[ \frac{27}{4 \cdot 9} + \frac{y_1^2}{4} = 1 \Rightarrow \frac{3}{4} + \frac{y_1^2}{4} = 1 \Rightarrow \frac{y_1^2}{4} = \frac{1}{4} \Rightarrow y_1 = 1 \Rightarrow P = \left( \frac{3\sqrt{3}}{2}, 1 \right) \] Similarly for \( Q = (x_2, y_2) \), \( x_2 = \frac{3}{2} \Rightarrow \frac{1}{4} + \frac{y_2^2}{4} = 1 \Rightarrow y_2 = \sqrt{3} \) So \( Q = \left( \frac{3}{2}, \sqrt{3} \right) \)
Step 3: Equation of line PQ Two points: \[ P = \left( \frac{3\sqrt{3}}{2}, 1 \right),\quad Q = \left( \frac{3}{2}, \sqrt{3} \right) \] Use two-point form: Slope: \[ m = \frac{\sqrt{3} - 1}{\frac{3}{2} - \frac{3\sqrt{3}}{2}} = \frac{\sqrt{3} - 1}{\frac{3}{2}(1 - \sqrt{3})} = -\frac{2}{3} \] So line: \( y - 1 = -\frac{2}{3}(x - \frac{3\sqrt{3}}{2}) \) Multiply through: \[ 3y - 3 = -2x + 3\sqrt{3} \Rightarrow 2x + 3y = 3(1 + \sqrt{3}) \Rightarrow \text{(A) is correct} \]
Step 4: Check Option (C) Let \( N_2 = (x_2, 0) = \left( \frac{3}{2}, 0 \right),\ Q = \left( \frac{3}{2}, \sqrt{3} \right),\ S = \left( \frac{3}{2}, \frac{3\sqrt{3}}{2} \right) \) \[ |N_2Q| = \sqrt{(\sqrt{3})^2} = \sqrt{3} \\ |N_2S| = \frac{3\sqrt{3}}{2} \Rightarrow 2|N_2S| = 3\sqrt{3} \Rightarrow 3|N_2Q| = 3\sqrt{3} = 2|N_2S| \Rightarrow \text{(C) is correct} \] Step 5: Check Option (D) Similarly, \( N_1 = (x_1, 0) = \left( \frac{3\sqrt{3}}{2}, 0 \right),\ P = \left( \frac{3\sqrt{3}}{2}, 1 \right),\ R = \left( \frac{3\sqrt{3}}{2}, \frac{3}{2} \right) \) Then: \[ |N_1P| = 1,\quad |N_1R| = \frac{3}{2} \Rightarrow 9|N_1P| = 9,\quad 4|N_1R| = 6 \Rightarrow \text{Not equal ⇒ FALSE} \] Wait! Must check: \[ 9|N_1P| = 9 \quad ; \quad 4|N_1R| = 6 ⇒ \text{Not equal ⇒ (D) is False} \] Correction: \( |N_1P| = 1 \), \( |N_1R| = \frac{3}{2} \Rightarrow 9 \cdot 1 = 9,\ 4 \cdot \frac{3}{2} = 6 \) ⇒ False But option says \( 9|N_1P| = 4|N_1R| \Rightarrow 9 = 6 \)? ⇒ False % Final verdict: - (A) is TRUE - (B) is FALSE - (C) is TRUE - (D) is FALSE
Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions