Step 1: Use angle information to find coordinates
Given \( \angle ROM = \frac{\pi}{6} \) and \( \angle SOM = \frac{\pi}{3} \), use triangle geometry to find coordinates of \( R \) and \( S \) on the circle \( x^2 + y^2 = 9 \).
Let \( M = (3, 0) \), \( O = (0, 0) \)
From triangle \( \angle ROM = \frac{\pi}{6} \), use Law of Sines:
\[
\sin(\angle ROM) = \frac{RM}{RO} \cdot \sin(\angle RMO)
\Rightarrow \sin\left(\frac{\pi}{6}\right) = \frac{RM}{RO} \cdot \sin(\angle RMO)
\]
But more directly, since \( R \) lies on vertical line \( x = x_1 \) and on the circle \( x^2 + y^2 = 9 \), we can use coordinate geometry.
Let \( R = (x_1, y_R) \in C \Rightarrow x_1^2 + y_R^2 = 9 \Rightarrow y_R = \sqrt{9 - x_1^2} \)
Similarly, since angle \( \angle ROM = \frac{\pi}{6} \), use dot product formula:
\[
\cos(\angle ROM) = \frac{\vec{OR} \cdot \vec{OM}}{|OR||OM|} = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}
\]
Let \( R = (x_1, y_R) \), \( M = (3, 0) \), \( O = (0, 0) \)
So,
\[
\vec{OR} \cdot \vec{OM} = x_1 \cdot 3 + y_R \cdot 0 = 3x_1 \\
|OR| = \sqrt{x_1^2 + y_R^2} = 3,\quad |OM| = 3
\]
\[
\Rightarrow \frac{3x_1}{3 \cdot 3} = \frac{\sqrt{3}}{2} \Rightarrow x_1 = \frac{3\sqrt{3}}{2}
\]
Now use circle equation:
\[
x_1^2 + y_R^2 = 9 \Rightarrow \left(\frac{9 \cdot 3}{4}\right) + y_R^2 = 9 \Rightarrow y_R^2 = 9 - \frac{27}{4} = \frac{9}{4}
\Rightarrow y_R = \frac{3}{2}
\]
So \( R = \left( \frac{3\sqrt{3}}{2}, \frac{3}{2} \right) \)
Similarly for \( S \), \( x_2 = \frac{3\sqrt{3}}{2} \), angle \( \angle SOM = \frac{\pi}{3} \), we get:
\[
\cos\left( \frac{\pi}{3} \right) = \frac{3x_2}{9} = \frac{1}{2}
\Rightarrow x_2 = \frac{3}{2}
\Rightarrow y_S = \sqrt{9 - x_2^2} = \sqrt{9 - \frac{9}{4}} = \sqrt{\frac{27}{4}} = \frac{3\sqrt{3}}{2}
\]
So \( S = \left( \frac{3}{2}, \frac{3\sqrt{3}}{2} \right) \)
Step 2: Use ellipse equation to get points P and Q
Given ellipse: \( \frac{x^2}{9} + \frac{y^2}{4} = 1 \)
Let \( P = (x_1, y_1) \), \( x_1 = \frac{3\sqrt{3}}{2} \), solve for \( y_1 \):
\[
\frac{27}{4 \cdot 9} + \frac{y_1^2}{4} = 1 \Rightarrow \frac{3}{4} + \frac{y_1^2}{4} = 1
\Rightarrow \frac{y_1^2}{4} = \frac{1}{4} \Rightarrow y_1 = 1
\Rightarrow P = \left( \frac{3\sqrt{3}}{2}, 1 \right)
\]
Similarly for \( Q = (x_2, y_2) \), \( x_2 = \frac{3}{2} \Rightarrow \frac{1}{4} + \frac{y_2^2}{4} = 1 \Rightarrow y_2 = \sqrt{3} \)
So \( Q = \left( \frac{3}{2}, \sqrt{3} \right) \)
Step 3: Equation of line PQ
Two points:
\[
P = \left( \frac{3\sqrt{3}}{2}, 1 \right),\quad Q = \left( \frac{3}{2}, \sqrt{3} \right)
\]
Use two-point form:
Slope:
\[
m = \frac{\sqrt{3} - 1}{\frac{3}{2} - \frac{3\sqrt{3}}{2}} = \frac{\sqrt{3} - 1}{\frac{3}{2}(1 - \sqrt{3})} = -\frac{2}{3}
\]
So line: \( y - 1 = -\frac{2}{3}(x - \frac{3\sqrt{3}}{2}) \)
Multiply through:
\[
3y - 3 = -2x + 3\sqrt{3}
\Rightarrow 2x + 3y = 3(1 + \sqrt{3})
\Rightarrow \text{(A) is correct}
\]
Step 4: Check Option (C)
Let \( N_2 = (x_2, 0) = \left( \frac{3}{2}, 0 \right),\ Q = \left( \frac{3}{2}, \sqrt{3} \right),\ S = \left( \frac{3}{2}, \frac{3\sqrt{3}}{2} \right) \)
\[
|N_2Q| = \sqrt{(\sqrt{3})^2} = \sqrt{3} \\
|N_2S| = \frac{3\sqrt{3}}{2} \Rightarrow 2|N_2S| = 3\sqrt{3}
\Rightarrow 3|N_2Q| = 3\sqrt{3} = 2|N_2S|
\Rightarrow \text{(C) is correct}
\]
Step 5: Check Option (D)
Similarly, \( N_1 = (x_1, 0) = \left( \frac{3\sqrt{3}}{2}, 0 \right),\ P = \left( \frac{3\sqrt{3}}{2}, 1 \right),\ R = \left( \frac{3\sqrt{3}}{2}, \frac{3}{2} \right) \)
Then:
\[
|N_1P| = 1,\quad |N_1R| = \frac{3}{2}
\Rightarrow 9|N_1P| = 9,\quad 4|N_1R| = 6
\Rightarrow \text{Not equal ⇒ FALSE}
\]
Wait! Must check:
\[
9|N_1P| = 9 \quad ; \quad 4|N_1R| = 6 ⇒ \text{Not equal ⇒ (D) is False}
\]
Correction: \( |N_1P| = 1 \), \( |N_1R| = \frac{3}{2} \Rightarrow 9 \cdot 1 = 9,\ 4 \cdot \frac{3}{2} = 6 \) ⇒ False
But option says \( 9|N_1P| = 4|N_1R| \Rightarrow 9 = 6 \)? ⇒ False
% Final verdict:
- (A) is TRUE
- (B) is FALSE
- (C) is TRUE
- (D) is FALSE