Consider the state-space model:
\[ \dot{x}(t) = A x(t) + B u(t) \] \[ y(t) = C x(t) \] \[ A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix} \]The sum of the magnitudes of the poles is:
Step 1: The poles of the system are the eigenvalues of the matrix \( A \). To find the eigenvalues, we solve the characteristic equation:
\[ \det(A - \lambda I) = 0 \]where \( \lambda \) represents the eigenvalues and \( I \) is the identity matrix. The matrix \( A - \lambda I \) is:
\[ A - \lambda I = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -\lambda & 1 \\ -2 & -3 - \lambda \end{bmatrix} \]Now, we compute the determinant:
\[ \det(A - \lambda I) = (-\lambda)(-3 - \lambda) - (1)(-2) = \lambda^2 + 3\lambda + 2 \]We set this equal to zero to find the eigenvalues:
\[ \lambda^2 + 3\lambda + 2 = 0 \]Solving this quadratic equation:
\[ \lambda = \frac{-3 \pm \sqrt{3^2 - 4(1)(2)}}{2(1)} = \frac{-3 \pm \sqrt{9 - 8}}{2} = \frac{-3 \pm 1}{2} \]Thus, the eigenvalues (poles) are:
\[ \lambda_1 = \frac{-3 + 1}{2} = -1, \quad \lambda_2 = \frac{-3 - 1}{2} = -2 \]Step 2: The sum of the magnitudes of the poles is:
\[ |\lambda_1| + |\lambda_2| = |-1| + |-2| = 1 + 2 = 3 \]Thus, the sum of the magnitudes of the poles is 3.
A controller \( (1 + K_{DS}) \) is to be designed for the plant \[ G(s) = \frac{1000 \sqrt{2}}{s(s + 10)^2} \] The value of \( K_D \) that yields a phase margin of 45 degrees at the gain cross-over frequency of 10 rad/sec is ……… (round off to 1 decimal place).
The relationship between two variables \( x \) and \( y \) is given by \( x + py + q = 0 \) and is shown in the figure. Find the values of \( p \) and \( q \). Note: The figure shown is representative.