In the given figure, EF and HJ are coded as 30 and 80, respectively. Which one among the given options is most appropriate for the entries marked (i) and (ii)?

In the adjoining figure, $\triangle CAB$ is a right triangle, right angled at A and $AD \perp BC$. Prove that $\triangle ADB \sim \triangle CDA$. Further, if $BC = 10$ cm and $CD = 2$ cm, find the length of AD. 
In the diagram, the lines QR and ST are parallel to each other. The shortest distance between these two lines is half the shortest distance between the point P and the line QR. What is the ratio of the area of the triangle PST to the area of the trapezium SQRT?
Note: The figure shown is representative

In \(\triangle ABC\), \(DE \parallel BC\). If \(AE = (2x+1)\) cm, \(EC = 4\) cm, \(AD = (x+1)\) cm and \(DB = 3\) cm, then the value of \(x\) is

In the circuit, \( I_{\text{DC}} \) is an ideal current source, the transistors \( M_1 \), \( M_2 \) are assumed to be biased in saturation wherein \( V_{\text{in}} \) is the input signal and \( V_{\text{DC}} \) is the fixed DC voltage. Both transistors have a small signal resistance of \( R_{ds} \) and transconductance of \( g_m \). The small signal output impedance of the circuit is:

Assuming ideal op-amps, the circuit represents:

Selected data points of the step response of a stable first-order linear time-invariant (LTI) system are given below. The closest value of the time constant (in seconds) of the system is:
\[ \begin{array}{|c|c|} \hline \textbf{Time (sec)} & \textbf{Output} \\ \hline 0.6 & 0.78 \\ 1.6 & 2.8 \\ 2.6 & 2.98 \\ 10 & 3 \\ \infty & 3 \\ \hline \end{array} \]