Step 1. Verification of Statement I: To check if \( f(-x) \) is the inverse of \( f(x) \), we need to verify if \( f(x) \cdot f(-x) = I \), where \( I \) is the identity matrix.
- Calculate \( f(-x) \):
\(f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}\)
\(f(-x) = \begin{bmatrix} \cos(-x) & -\sin(-x) & 0 \\ \sin(-x) & \cos(-x) & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}\)
- Now, compute \( f(x) \cdot f(-x) \):
\(f(x) \cdot f(-x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I\)
- Thus, \( f(-x) \) is indeed the inverse of \( f(x) \), so Statement I is true.
Step 2. Verification of Statement II: To verify \( f(x) \cdot f(y) = f(x + y) \), perform the matrix multiplication \( f(x) \cdot f(y) \):
\(f(x) \cdot f(y) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(x + y) & -\sin(x + y) & 0 \\ \sin(x + y) & \cos(x + y) & 0 \\ 0 & 0 & 1 \end{bmatrix} = f(x + y)\)
- Therefore, \( f(x) \cdot f(y) = f(x + y) \), so Statement II is also true.
Since both Statement I and Statement II are true, the correct answer is \( (4) \).
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: