To determine the truth of the given statements regarding the matrix \( f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \), we'll analyze each statement individually.
Since both statements hold true, the correct answer is: Both Statement I and Statement II are true.
Step 1. Verification of Statement I: To check if \( f(-x) \) is the inverse of \( f(x) \), we need to verify if \( f(x) \cdot f(-x) = I \), where \( I \) is the identity matrix.
- Calculate \( f(-x) \):
\(f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}\)
\(f(-x) = \begin{bmatrix} \cos(-x) & -\sin(-x) & 0 \\ \sin(-x) & \cos(-x) & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}\)
- Now, compute \( f(x) \cdot f(-x) \):
\(f(x) \cdot f(-x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I\)
- Thus, \( f(-x) \) is indeed the inverse of \( f(x) \), so Statement I is true.
Step 2. Verification of Statement II: To verify \( f(x) \cdot f(y) = f(x + y) \), perform the matrix multiplication \( f(x) \cdot f(y) \):
\(f(x) \cdot f(y) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(x + y) & -\sin(x + y) & 0 \\ \sin(x + y) & \cos(x + y) & 0 \\ 0 & 0 & 1 \end{bmatrix} = f(x + y)\)
- Therefore, \( f(x) \cdot f(y) = f(x + y) \), so Statement II is also true.
Since both Statement I and Statement II are true, the correct answer is \( (4) \).
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
