Step 1. Verification of Statement I: To check if \( f(-x) \) is the inverse of \( f(x) \), we need to verify if \( f(x) \cdot f(-x) = I \), where \( I \) is the identity matrix.
- Calculate \( f(-x) \):
\(f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}\)
\(f(-x) = \begin{bmatrix} \cos(-x) & -\sin(-x) & 0 \\ \sin(-x) & \cos(-x) & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}\)
- Now, compute \( f(x) \cdot f(-x) \):
\(f(x) \cdot f(-x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I\)
- Thus, \( f(-x) \) is indeed the inverse of \( f(x) \), so Statement I is true.
Step 2. Verification of Statement II: To verify \( f(x) \cdot f(y) = f(x + y) \), perform the matrix multiplication \( f(x) \cdot f(y) \):
\(f(x) \cdot f(y) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(x + y) & -\sin(x + y) & 0 \\ \sin(x + y) & \cos(x + y) & 0 \\ 0 & 0 & 1 \end{bmatrix} = f(x + y)\)
- Therefore, \( f(x) \cdot f(y) = f(x + y) \), so Statement II is also true.
Since both Statement I and Statement II are true, the correct answer is \( (4) \).
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)