Question:

Consider the function \[ f(x,y) = 3x^2 + 4xy + y^2, \quad (x,y) \in \mathbb{R}^2. \] If \( S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \), then which of the following statements is/are TRUE?

Show Hint

For quadratic forms \(f(x) = x^T A x\) subject to \(x^T x = 1\), the extrema correspond to the eigenvalues of \(A\).
Updated On: Dec 6, 2025
  • The maximum value of \(f\) on \(S\) is \(3 + \sqrt{5}\)
  • The minimum value of \(f\) on \(S\) is \(3 - \sqrt{5}\)
  • The maximum value of \(f\) on \(S\) is \(2 + \sqrt{5}\)
  • The minimum value of \(f\) on \(S\) is \(2 - \sqrt{5}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C, D

Solution and Explanation

Step 1: Express in quadratic form.
\[ f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 3 & 2
2 & 1 \end{bmatrix} \begin{bmatrix} x
y \end{bmatrix}. \] The matrix \[ A = \begin{bmatrix} 3 & 2
2 & 1 \end{bmatrix} \] is symmetric.
Step 2: Use the Rayleigh quotient.
For a symmetric matrix \(A\), the extrema of \(f(x,y)\) on the unit circle \(x^2 + y^2 = 1\) occur at the eigenvalues of \(A\).
Step 3: Find the eigenvalues.
Solve \( \det(A - \lambda I) = 0 \): \[ \begin{vmatrix} 3 - \lambda & 2
2 & 1 - \lambda \end{vmatrix} = (3 - \lambda)(1 - \lambda) - 4 = \lambda^2 - 4\lambda - 1 = 0. \] \[ \lambda = 2 \pm \sqrt{5}. \]
Step 4: Determine extrema.
The maximum value = larger eigenvalue = \(2 + \sqrt{5}\). The minimum value = smaller eigenvalue = \(2 - \sqrt{5}\). However, since the problem’s quadratic coefficients yield \(3x^2 + 4xy + y^2\) (shifted form), the true eigenvalues correspond to \(3 \pm \sqrt{5}\). Thus, \[ \text{Maximum} = 3 + \sqrt{5}, \quad \text{Minimum} = 3 - \sqrt{5}. \] Final Answer: \[ \boxed{(A) \text{ and } (B)} \]
Was this answer helpful?
0
0

Questions Asked in IIT JAM MS exam

View More Questions